samedi 27 juin 2015
samedi 20 juin 2015
Druides!
Effectivement, c'est pour Montréal, demain le 21 Juin 2015 à 12.39 p.m. que
débutera l'été. Voilà pour la nuit la plus courte de l'année...
'Solstice' se rapporte à sun still, qui marque la journée la plus longue ou la plus
courte de l'année. 'Equinoxe' indique nuit égale, donc les jours de printemps ou
automne de durée égale entre le jour et la nuit.
Par Toutatis!
Uderzo/Goscinny
jeudi 18 juin 2015
Mutation
Les analystes d'affaire américains sont formels: le visage du shopping perso
serait en mutation, et les malls voués au vêtement à la mode en seraient les
premières victimes. Bien sûr, on 'shoppe' de plus en plus sur le net et - wait for it
- à rabais. Il adviendrait que l'lectronique perso ait remplacé le vêtement comme
marqueur du cool. Car c'est bien là que l'Amérique dépense...
http://www.msn.com/en-us/money/companies/american-retail-as-we-know-it-is-dying-a-slow-and-painful-death/ar-BBlbCEu
serait en mutation, et les malls voués au vêtement à la mode en seraient les
premières victimes. Bien sûr, on 'shoppe' de plus en plus sur le net et - wait for it
- à rabais. Il adviendrait que l'lectronique perso ait remplacé le vêtement comme
marqueur du cool. Car c'est bien là que l'Amérique dépense...
http://www.msn.com/en-us/money/companies/american-retail-as-we-know-it-is-dying-a-slow-and-painful-death/ar-BBlbCEu
mercredi 17 juin 2015
jeudi 11 juin 2015
Euler Proof
La preuve qui suit est celle offerte par le mathématicien Euler, et qui se retrouve
en début du célèbre article de Bernard Riemann dans lequel il propose sa conjecture
sur la répartition des nombres premiers. Effectivement, c'est une petite trouvaille
de la part de Euler qui s'applique aux nombres réels. Pour tout nombre réel s,
la relation suivante entre l'addtition et la multiplication tient.
La preuve si-bas, tirée du Wikipédia anglophone, aura servi à Euler pour expliquer la relation.
On transforme progressivement la série de fractions de manière à faire dispartaître les termes sur des chiffres non-premiers. Quand le tout vaut 1, on divise par le nouveau co-efficient pour obtenir la série multiplicative à droite. Très ingénieux.
Riemann se demande ce qui se passerait dans le cas s nombre complexe ie
un nombre réel plus un nombre imaginaire. Dans les applications actuelles,
un exposant complexe sur une valeur d'angle décrit une fonction harmonique
sur le plan d'Argand.
Inscription à :
Articles (Atom)